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Abstract—Wireless multipath propagation causes different paths 

taken by the signal due to interacting objects present in the 

environment producing multipath components (MPCs). Cluster-

based channel models characterize the wireless channel, and 

different approaches are utilized to cluster the MPCs.  Data 

mining requires different techniques such as visualization to 

extract important information and find patterns and clusters in the 

data. A Graphical User Interface (GUI) is developed in this paper 

to aid the visualization and the manual clustering of MPCs using 

t-distributed Stochastic Neighborhood Embedding (t-SNE) and 

Uniform Manifold Approximation and Projection (UMAP). The 

clustering results of Simultaneous Clustering and Model 

Selection (SCAMS) are used in this paper. The datasets are 

embedded into low-dimensional projection and are manually re-

clustered. The manual clustering was performed visually and 

interactively, which achieves a higher Jaccard membership index 

with a low value of 0.3368, a median of 0.4697, and a high value 

of 0.8884 for all the datasets. 

 

Index Terms—Graphical user interface, multipath clustering, 

interactive clustering, wireless propagation, dimensionality 

reduction 

I. INTRODUCTION 

Wireless channel modeling has been an integral part of 

developing wireless communication systems. The demand 

for seamless wireless connectivity poses a massive 

challenge to system designers. The use of Multiple-Input 

Multiple-Output (MIMO) systems is one of the enabling 

technologies of new standards such as the Fifth Generation 

(5G) mobile cellular systems and Wireless Local Area 

Networks (WLAN). Utilizing MIMO technology opens up 

benefits for different use cases, namely beamforming, 

spatial multiplexing, and diversity, where the trade-off 

between these produces optimum use cases of the wireless 

channel [1]. Furthermore, MIMO bridges data mining and 

channel modeling in which machine learning can be 

applied to various challenges in channel modeling [2]. 

Multipath components (MPCs) are produced due to 

interacting objects in the propagation environment known 

as scatterers. Literature shows that MPCs arrive in clusters, 

and an accurate clustering allows a simplified analysis in 

getting the Channel State Information (CSI). Furthermore, 

studies have attributed clusters to the scatterers present in 

the environment. 

Cluster-based channel models have been developed to 

analyze the transmission in a geometric approach that 

makes use of the concept of clusters. The COST 2100 

Channel Model (C2CM) is a geometry-based stochastic 

model that can replicate MIMO channels’ behavior [3]. 

Techniques for clustering the MPCs on different 

parameters are proposed in the literature [4]–[6]. 

Traditionally, the manual approach was used but tended to 

be laborious, especially for large datasets, and is quite 

subjective [7], [8].  Recently, machine learning techniques 

have been employed to cluster the multipaths 

automatically. A framework in [9] is proposed using the 

Multipath Component Distance (MCD) to suit the angular 

nature of the measured data. Currently, no clustering 

technique outperforms the other approaches, which leads 

to different accuracy results in clustering the MPCs. 

The limitation of the human eye to visualize more than 

3-Dimensional (3D) plots poses a challenge in seeing all 

the features of data points. In Fig. 1, an example of 

projecting three features of one snapshot of a dataset for a 

semi-urban scenario generated from C2CM is illustrated. 

The groupings are not easily identified via manual 

inspection, which can be tedious if done. Also, the 

elevation and azimuth of departure are not accounted for 

in the visualization. 

 
Fig. 1. Visualization of MPC features [10] 

Recently, Dimensionality Reduction (DR) techniques 

have attracted different fields to embed high-dimensional 

data into low-dimensional plots for visualization. The 

produced visualization shows cluster tendencies of the data. 

Visualization aids the manual clustering of MPC and also 
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validates the automatic clustering performance, 

establishing a middle-ground approach [11]. Interactive 

clustering requires a human-in-the-loop process and 

domain knowledge enables the user to visualize, modify, 

reject, and or accept the clustering results [12]. 

Additionally, using a Graphical User Interface (GUI) 

allows the human-computer interaction, which combines 

the computing power and domain knowledge of the user 

resulting in more interpretability and understanding of the 

clustering results. 

This paper proposes a GUI that enables DR techniques 

to visualize MPCs, refine the cluster, and increase the 

cluster membership accuracy. The rest of the paper is 

organized as follows. Section II presents related works in 

the literature regarding the clustering of MPCs and the use 

of DR techniques. Section III discusses the techniques 

used to achieve the goal, followed by Section IV, which 

presents the methodology. The results are analyzed and 

discussed in Section V, and Section VI concludes this 

paper. 

II. RELATED WORKS 

Interfaces can aid in interpreting data, its natural clusters, 

and the validation of clustering performance. Many 

interfaces are developed to project and visualize data using 

PCA, parallel coordinates, scatterplots, and heatmaps 

[13]–[15]. Multi-dimensional techniques also receive 

attention in providing the user interactivity and analysis 

shown in [16]. Gene expression is one of the fields that use 

cluster analysis. A GUI is developed using Matlab in [16] 

equipped with external and internal validity indices using 

a gene expression dataset. A clustering tour is introduced 

in [17], where t-SNE is used on the dataset and projects an 

interactive and guided analysis.  

In multipath clustering, numerous methods are used to 

project the features of MPCs, such as angular elevations, 

azimuths, and the time delay. In [18], the correct number 

of clusters is evaluated using a factor-inclusion weighing 

approach where a GUI is presented to visually compare the 

effective weight for scenarios. Moreover, a tool for 

visualizing small interacting objects and their location 

using 3D point cloud data in an urban propagation 

environment is introduced [19]. Using a GUI in [20], a 

comparison of four clustering techniques is presented 

where the user can choose the algorithm and display the 

accuracy. In projecting the MPCs, some features are not 

represented due to the limitation of 3D visuals. Visual 

projections were used to project the MPC in [21], where 

parallel plot coordinates, heatmap, and t-SNE were used in 

MPC data, but lacks interactivity. Hence, the aim of this 

paper is to visually project clustering results using a GUI 

and modify the cluster membership manually to increase 

the accuracy further. 

III. DIMENSIONALITY REDUCTION TECHNIQUES 

DR techniques are classified into linear and non-linear 

methods. This paper uses three DR techniques to project 

the MPC that assists the manual clustering process through 

visualization. 

A. PCA 

PCA is one of the oldest techniques that is still being 

used today. PCA is a linear DR technique that intends to 

capture the variance of the dataset and construct a linear 

combination of the original variables. PCA preserves the 

global structure of the data and uses orthogonal 

transformation that captures the maximum variance. PCA 

can be used to reduce the data to a lower dimension by 

retaining the principal components. Furthermore, PCA can 

be used to decorrelate the data and for sphering the data 

[2], [22], and this approach is used in this study. 

B. t-distributed Stochastic Neighborhood Embedding (t-

SNE) 

t-SNE is classified as a non-linear DR technique that 

uses the t-distribution, which addresses the crowding 

problem of SNE. The t-SNE algorithm aims to represent 

high-dimensional data and project it into low-dimension 

for visualization [23]. The non-linear structure of the data 

is captured by t-SNE and seeks to preserve the local 

structure focusing on the neighboring points. For setting 

the number of neighboring points in the visualization, t-

SNE uses a hyperparameter called perplexity. The P and 

Q are the distribution of the pairwise probability in the 

high and low dimensions in which the Kullback-Leibner 

divergence is minimized using gradient descent. 

C. Uniform Manifold Approximation and Projection 

(UMAP) 

A recent technique named UMAP is also a non-linear or 

manifold learning DR technique constructed based on 

algebraic topology [24]. As with t-SNE, the neighboring 

points can be specified in UMAP using the parameter min 

points. The UMAP algorithm can be divided into two 

significant steps: graph construction and layout. The 

probability distribution that the 𝑖th  and 𝑗th  is similar is 

computed using a distance metric, usually the Euclidean 

distance. The likelihood graph is then constructed for the 

similarities P and Q are the probabilistic similarity in high 

and low dimensions, respectively. For optimizing the low-

dimensional graph, the cost function used is the binary 

cross-entropy to capture the data's global structure. The 

Matlab implementation in [25] was used in this study. 

D. Multipath Component Distance (MCD) 

The MCD is used in different techniques to quantify the 

separation between the 𝑖𝑡ℎ and the 𝑗𝑡ℎ  MPC  [26]. It was 

first introduced in automatic clustering algorithms in [27]. 

The angle of arrival (AOA) and angle of departure (AOD) 

distances are calculated separately through Eq. 1: 

 

MCDAoA/AoD,𝑖𝑗 =
1

2
|(

sin (𝜃𝑖)cos (𝜑𝑖)

sin (𝜃𝑖)sin (𝜑𝑖)

cos (𝜃𝑖)
) − (

sin (𝜃𝑗)cos (𝜑𝑗)

sin (𝜃𝑗)sin (𝜑𝑗)

cos (𝜃𝑗)

)| 

 

(1)

 

The distance between the delay parameter 𝜏 is obtained 

by Eq. 2: 

MCD𝜏,𝑖𝑗 = 𝜁 ⋅
|𝜏𝑖 − 𝜏𝑗|

Δ𝜏𝑚𝑎𝑥

⋅
𝜏std

Δ𝜏𝑚𝑎𝑥

 
 

(2)
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where 𝜏std is the standard deviation of the delays, and 𝜁 

represents a scaling factor for the delays. Finally, Eq. (3) 

calculates the distance between two MPCs: 

 

MCD𝑖𝑗 = √∥∥MCDAoA,𝑖𝑗∥∥
2

+ ∥∥MCDAoD,𝑖𝑗∥∥
2

+ MCD𝜏,𝑖𝑗
2  

(3) 

 

The t-SNE and UMAP use a distance metric to calculate 

the pairwise distance of points in high-dimensional space. 

In this work, the MCD is integrated as a custom distance 

function for both the DR algorithms. However, the clusters 

cannot be readily determined by examination after 

projecting the data with ground-truth values. The PCA was 

utilized as a pre-processing step where the number of 

components was preserved and displayed a more 

optimistic projection. Consequently, the method used in 

this paper is to apply PCA first before the DR procedures. 

Fig. 2 illustrates one snapshot per dataset with the ground-

truth labels using PCA, t-SNE, and the MCD. The 

perplexity and number of minimum points of t-SNE and 

UMAP were set to √𝑁 , where 𝑁 is the number of MPC 

per snapshot. Utilizing UMAP with the same procedure, 

the results are presented in Fig. 3. 

 

  

  

  

  

Fig.  2. Ground-truth projection using PCA+ t-SNE and MCD  

  

  

  

  

Fig.  3. Ground-truth  Projection using PCA+ UMAP and MCD  

Fig. 2 and Fig. 3 project the ground truth, showing that 

the true cluster members are close to one another, which 

can visually aid the manual refinement process. By visual 

inspection, the approach of using the DR techniques assists 

in identifying the membership of each cluster quickly, 

especially for semi-urban scenarios with large MPCs.  

IV. METHODOLOGY 

 
Fig. 4. Methodology of the study 

The methods used in this study are discussed in this 

section. The datasets used, the design of the GUI, and the 

cluster validation are discussed. Fig. 4 summarizes the 

methodology used in this paper. The approach of this paper 

is to incorporate visualization as an additional step in the 

clustering process which further improves the accuracy of 

the automatic clustering approaches. The use of the MCD 

in calculating the distance in high-dimension is 

incorporated into the DR techniques. With the use of 
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validity indices, the results of the automatic approach of 

SCAMS have been increased by manually refining the 

membership using the projections. 

A. Datasets 

The datasets used in this study are taken from the 

Institute of Electrical and Electronics Engineers (IEEE) 

data port [10]. The C2CM was used to produce MPC data 

from eight-channel scenarios, each with 30 trials of 

snapshots listed as follows: 

1. B1, indoor, single link, line-of-sight 

2. B1, semi-urban, multiple links, line-of-sight 

3. B1, semi-urban, single link, line-of-sight 

4. B1, semi-urban, single link, non-line-of-sight 

5. B2, indoor, single link, line-of-sight 

6. B2, semi-urban, multiple links, line-of-sight 

7. B2, semi-urban, single link, line-of-sight 

8. B2, semi-urban, single link, non-line-of-sight 

Each snapshot of the dataset is represented by matrix 

𝑿 = {𝒙𝟏, 𝒙𝟐, … 𝒙𝑳}  which contains rows of MPC 

represented by 𝒙ℓ = [𝜏ℓ, 𝜃ℓ,AOA , 𝜑ℓ,AOA , 𝜃ℓ,AOD , 𝜑ℓ,AOD] 

where 𝒙ℓ represents the ℓ𝑡ℎ MPC, 𝜏 represents delay, 𝜃 is 

the elevation angle of departure and arrival, and 𝜑 is the 

azimuth angle of departure and arrival. Additionally, the 

reference cluster membership of each MPC per snapshot is 

also provided. 

The clustering results from SCAMS presented in [28] 

are used in this study as the clustering results to be 

modified. The computed cluster membership of the 

algorithm is manually refined to increase the accuracy 

further. 

B. GUI Design 

The GUI is developed using the Matlab App Designer, 

where components are dragged in a canvas making it more 

flexible in positioning components. The components are 

then given some callback functions to perform the 

necessary outcomes. The GUI is designed with four tabs, 

one for the file input, two for the t-SNE and UMAP 

algorithm, and one tab for the quick start guide. 

Additionally, the Jaccard index is calculated with the given 

input data clustering results and after merging or 

modifying the clusters. The File tab shown in Fig. 5 allows 

the user to input an Excel file with reference and clustering 

results as the final two columns of the file. The reason for 

this is to let the interface know the reference and cluster 

result for the Jaccard computation. 

 
Fig. 5. File tab of the GUI 

 

Fig. 6. GUI layout and components 
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Fig. 6 illustrates the GUI developed with the 

components that are used interactively. Component  lets 

the user select the option to use PCA and the distance 

metric to be used. The distance metric included are 

Minkowski, Euclidean, and the MCD. After selecting the 

parameters, through the t-SNE/UMAP button, the low-

dimension representation is computed, and then the results 

are graphed in a scatterplot represented in component . 

Furthermore, inside this plot, the groups of MPCs are 

brushed and selected to modify their cluster membership.  

Component  is a table of the brushed MPCs and  is a 

selection menu to merge clusters, revert to their original 

cluster ID, or assign a new cluster to the selected MPCs. A 

table is shown calculated inside the GUI  to view an 

increase or decrease in the accuracy. Lastly, the 

component  allows the user to save the file with the 

original dataset, the manual cluster IDs, and the 

transformed variables from t-SNE and UMAP in an Excel 

sheet. Components of the GUI are summarized in Table I. 

TABLE I. SUMMARY OF COMPONENTS IN THE DR TABS 

Component Function 

 Parameter selection with the use of PCA and 

distance metric to be used 

 Projection of MPC using the selected algorithm (t-
SNE or UMAP) 

 Brushed MPC counts table 

 Cluster membership refining pane 

 Jaccard index table 

 DBSCAN button (future work) 

 Menu Bar for saving and  DR Tabs   

C.  Clustering Accuracy 

For evaluating the accuracy of the cluster membership 

of the manually refined clusters, the Jaccard index 𝜂  is 

used. The Jaccard index ranges from 0 to 1, where 1 

represents a perfect agreement between reference and 

calculated cluster membership. Jaccard index is computed 

mathematically in Eq. (4): 

𝜂Jac =
𝑀11

𝑀11 + 𝑀10 + 𝑀01

  ∈ [0,1]  (4) 

 

where 𝑀11 is the number of members that are both present 

in the calculated and reference cluster, 𝑀10 represents the 

members presented in the calculated but not in the 

reference cluster while 𝑀01  is the number of members 

present in the reference but not in the calculated clusters. 

V. RESULTS AND DISCUSSIONS 

The combined PCA, t-SNE/UMAP, and MCD show 

good visualization, and clusters can be seen by inspection. 

These parameters are used to modify the SCAMS result 

and achieve a higher Jaccard membership index. The use 

of t-SNE and UMAP are used alternatively and 

sequentially, depending on the nature of the dataset. The 

process of interaction inside the GUI is illustrated in Fig. 

7. Importing one data sheet per scenario and selecting one 

snapshot is the first step, then selecting the t-SNE or 

UMAP tab. The usage of PCA and distance metrics is part 

of the process, whereas the MCD is employed in this study 

for better visualization. Projecting one snapshot of the data 

with the SCAMS results inside the plot is displayed in Fig. 

8a, which only has a 0.1968 Jaccard membership index. 

The discrepancy in color labels is apparent because 

SCAMS has low cluster member accuracy in semi-urban 

scenarios. This process is repeated until visually noticeable 

groups of MPCs are processed, as shown in Fig. 8b, which 

achieves a 0.5051 Jaccard membership index after 39 

iterations. 

 
Fig. 7. GUI interaction process 

  
a.) SCAMS                                                                      b.) Manually Refined 

Fig. 8. Projection of MPCs before and after manual refinement 
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For semi-urban LOS and NLOS, the t-SNE was heavily 

used, while UMAP was mainly used for indoor and 

multiple-links scenarios. A total of 227 datasets were 

manually improved, with indoor datasets with a Jaccard 

index of one not included for improvement. The mean 

results of the SCAMS output and this work are 

summarized in Table II.  

TABLE II. RESULTS OF MANUAL CLUSTERING JACCARD MEMBERSHIP 

Channel Scenario 
SCAMS Output This Work Iterations 

Mean Standard Deviation Mean Standard Deviation Mean 

B1 Indoor LOS 0.66984 0.18943 0.86535 0.12856 11.88 

B1 Semi-Urban Multiple Links LOS 0.14588 0.01213 0.31511 0.11220 75.37 

B1 Semi-Urban Single Link LOS 0.18820 0.02845 0.54599 0.07288 50.63 

B1 Semi-Urban Single Link NLOS 0.15975 0.02729 0.45666 0.007728 60.70 

B1 Indoor LOS 0.65043 0.185074 0.846619 0.1510 10.19 

B1 Semi-Urban Multiple Links LOS 0.14499 0.01401 0.37029 0.04542 89.66 

B1 Semi-Urban Single Link LOS 0.18301 0.02120 0.48687 0.06188 48.17 

B1 Semi-Urban Single Link NLOS 0.15073 0.02473 0.43651 0.08237 56.30 

 

The mean percentage Jaccard index increase for bands 

1 and 2 is 29.19% and 30.16%, respectively. On the other 

hand, the lowest increase among the semi-urban scenarios 

is in the multiple links, with 140.48% for B1 and 153.43% 

for B2. The increase for the LOS semi-urban link was 

calculated to be 190.11% for B1, while a 166.04% increase 

was achieved for B2. Lastly, for the semi-urban NLOS 

single link, 185.87% for B1 and an increase of 189.60% 

for B2. The increase in the indoor datasets was lower than 

the semi-urban datasets because the indoor datasets 

already had a high Jaccard index from SCAMS. The 

approach is sensitive to multiple links datasets and has a 

lower increase due to overlapping clusters, as seen in the 

ground-truth projections. Additionally, the multiple links 

have the highest number of iterations due to the cluster 

overlaps. 

 
Fig. 9. Comparison of ECDF for all scenarios 

In Fig. 9, the empirical cumulative distribution function 

(ECDF) for the Jaccard indices of all the scenarios is 

illustrated. The ECDF of SCAMS output and the result of 

this work shows an increase in the 10th  50th  and 90th 

percentile. For the 10th percentile, the SCAMS has 0.1324, 

while the result in this study attains 0.3363 with a 

difference of 0.20392 improvement. The median for 

SCAMS and this work is 0.1663 and 0.4697, respectively, 

resulting in a 0.3034 increase. Finally, in the 90th 

percentile, a 0.1825 difference is achieved from 0.7059 of 

SCAMS and 0.8884 in this method.  

VI. CONCLUSION 

The results of using DR techniques in projecting 

clusters of wireless multipaths are presented in this work. 

Using PCA, t-SNE, UMAP, and MCD can aid the 

validation and refining of cluster membership. A GUI is 

developed and used to modify the SCAMS clustering 

results of the C2CM datasets and aids the human-in-the-

loop process and interactivity in clustering. The results 

suggest that the strategy of utilizing DR results in a 

significant increase in Jaccard accuracy. On the other hand, 

the semi-urban multiple linkages provide an issue in 

visually distinguishing overlapping clusters, resulting in 

lesser accuracy than the other semi-urban instances. 

Although manual refining seems laborious, automatic 

clustering techniques can be used in the dimensionally 

reduced data, which is considered for future work. 
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